The gastrointestinal tract is continuously exposed to foreign antigens in food and commensal microbes with potential to induce adaptive immune responses. Peripherally induced T regulatory (pTreg) cells are essential for mitigating inflammatory responses to these agents1–4. While RORγt+ antigen-presenting cells (RORγt-APCs) were shown to program gut microbiota-specific pTreg5–7, their definition remains incomplete, and the APC responsible for food tolerance has remained elusive. Here, we identify an APC subset required for differentiation of both food- and microbiota-specific pTreg cells and for establishment of oral tolerance. Development and function of these APCs require expression of the transcription factors Prdm16 and RORγt, as well as a unique Rorc(t) cis-regulatory element. Gene expression, chromatin accessibility, and surface marker analysis establish the pTreg-inducing APCs as myeloid in origin, distinct from ILC3, and sharing epigenetic profiles with classical dendritic cells (cDC), and designate them Prdm16+ RORγt+ tolerizing DC (tolDC). Upon genetic perturbation of tolDC, we observe a substantial increase in food antigen-specific T helper 2 (Th2) cells in lieu of pTreg, leading to compromised tolerance in mouse models of asthma and food allergy. Single-cell analyses of freshly resected mesenteric lymph nodes from a human organ donor, as well as multiple specimens of human intestine and tonsil, reveal candidate tolDC with co-expression of PRDM16 and RORC and an extensive transcriptome shared with mice, highlighting an evolutionarily conserved role across species. Our findings suggest that a better understanding of how tolDC develop and how they regulate T cell responses to food and microbial antigens could offer new insights into developing therapeutic strategies for autoimmune and allergic diseases as well as organ transplant tolerance.