Friday, May 2, 2025
15.8 C
London

An asymmetric fission island driven by shell effects in light fragments


  • Meitner, L. & Frisch, O. R. Products of the fission of the uranium nucleus. Nature 143, 239 (1939).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bohr, N. & Wheeler, J. A. The mechanism of nuclear fission. Phys. Rev. 56, 426–450 (1939).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scamps, G. & Simenel, C. Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides. Nature 564, 382–385 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bender, M. et al. Future of nuclear fission theory. J. Phys. G: Nucl. Part. Phys. 47, 113002 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Eichler, M. et al. The role of fission in neutron star mergers and its impact on the r-process peaks. Astrophys. J. 808, 30 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Yong, D. et al. r-process elements from magnetorotational hypernovae. Nature 595, 223–226 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goriely, S. et al. New fission fragment distributions and r-process origin of the rare-earth elements. Phys. Rev. Lett. 111, 242502 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemaire, M., Vaglio-Gaudard, C., Lyoussi, A. & Reynard-Carette, C. For a better estimation of gamma heating in nuclear material-testing reactors and associated devices: status and work plan from calculation methods to nuclear data. J. Nucl. Sci. Technol. 52, 1093–1101 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nichols, A. L. et al. Improving fission-product decay data for reactor applications. I. Decay heat. Eur. Phys. J. A 59, 78 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Strutinsky, V. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95, 420–442 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Andreyev, A. N. et al. New type of asymmetric fission in proton-rich nuclei. Phys. Rev. Lett. 105, 252502 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Itkis, M., Vardaci, E., Itkis, I., Knyazheva, G. & Kozulin, E. Fusion and fission of heavy and superheavy nuclei (experiment). Nucl. Phys. A 944, 204–237 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • An, F. et al. Evolution of the reactor antineutrino flux and spectrum at Daya Bay. Phys. Rev. Lett. 118, 251801 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, K.-H., Steinhauser, S. & Bockstiegel, C. Relativistic radioactive beams: a new access to nuclear-fission studies. Nucl. Phys. A 665, 221–267 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Chatillon, A. et al. Evidence for a new compact symmetric fission mode in light thorium isotopes. Phys. Rev. Lett. 124, 202502 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Itkis, M. G., Okolovich, V. N. & Smirenkin, G. N. Symmetric and asymmetric fission of nuclei lighter than radium. Nucl. Phys. A 502, 243–260 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Ghys, L. et al. Evolution of fission-fragment mass distributions in the neutron-deficient lead region. Phys. Rev. C 90, 041301 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andel, B. et al. β-delayed fission of isomers in Bi 188. Phys. Rev. C 102, 014319 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nishio, K. et al. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm. Phys. Lett. B 748, 89–94 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prasad, E. et al. Observation of mass-asymmetric fission of mercury nuclei in heavy ion fusion. Phys. Rev. C 91, 064605 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Tsekhanovich, I. et al. Observation of the competing fission modes in 178Pt. Phys. Lett. B 790, 583–588 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gupta, S. et al. Asymmetric fission around lead: the case of 198Po. Phys. Rev. C 100, 064608 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gupta, S. et al. Competing asymmetric fusion–fission and quasifission in neutron-deficient sub-lead nuclei. Phys. Lett. B 803, 135297 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Prasad, E. et al. Systematics of the mass-asymmetric fission of excited nuclei from 176Os to 206Pb. Phys. Lett. B 811, 135941 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bogachev, A. A. et al. Asymmetric and symmetric fission of excited nuclei of 180,190Hg and 184,192,202Pb formed in the reactions with 36Ar and 40,48Ca ions. Phys. Rev. C 104, 024623 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Swinton-Bland, B. et al. Multi-modal mass-asymmetric fission of 178Pt from simultaneous mass-kinetic energy fitting. Phys. Lett. B 837, 137655 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Schmitt, C. et al. Experimental evidence for common driving effects in low-energy fission from sublead to actinides. Phys. Rev. Lett. 126, 132502 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahata, K. et al. Evidence for the general dominance of proton shells in low-energy fission. Phys. Lett. B 825, 136859 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ichikawa, T., Iwamoto, A., Möller, P. & Sierk, A. J. Contrasting fission potential-energy structure of actinides and mercury isotopes. Phys. Rev. C 86, 024610 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ichikawa, T. & Möller, P. The microscopic mechanism behind the fission-barrier asymmetry (II): The rare-earth region 50 < Z < 82 and 82 < N < 126. Phys. Lett. B 789, 679–684 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Möller, P. & Randrup, J. Calculated fission-fragment yield systematics in the region 74 < Z < 94 and 90 < N < 150. Phys. Rev. C 91, 044316 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Andreev, A. V., Adamian, G. G. & Antonenko, N. V. Mass distributions for induced fission of different Hg isotopes. Phys. Rev. C 86, 044315 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Andreev, A. V., Adamian, G. G., Antonenko, N. V. & Andreyev, A. N. Isospin dependence of mass-distribution shape of fission fragments of Hg isotopes. Phys. Rev. C 88, 047604 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Panebianco, S. et al. Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes. Phys. Rev. C 86, 064601 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Warda, M., Staszczak, A. & Nazarewicz, W. Fission modes of mercury isotopes. Phys. Rev. C 86, 024601 (2012).

    Article 
    ADS 

    Google Scholar
     

  • McDonnell, J. D., Nazarewicz, W., Sheikh, J. A., Staszczak, A. & Warda, M. Excitation-energy dependence of fission in the mercury region. Phys. Rev. C 90, 021302 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Scamps, G. & Simenel, C. Effect of shell structure on the fission of sub-lead nuclei. Phys. Rev. C 100, 041602 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Geissel, H. et al. The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 70, 286–297 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Chatillon, A. et al. Experimental study of nuclear fission along the thorium isotopic chain: from asymmetric to symmetric fission. Phys. Rev. C 99, 054628 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martin, J.-F. et al. Fission-fragment yields and prompt-neutron multiplicity for Coulomb-induced fission of 234,235U and 237,238Np. Phys. Rev. C 104, 044602 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pellereau, E. et al. Accurate isotopic fission yields of electromagnetically induced fission of 238U measured in inverse kinematics at relativistic energies. Phys. Rev. C 95, 054603 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, K.-H., Jurado, B., Amouroux, C. & Schmitt, C. General description of fission observables: GEF model code. Nucl. Data Sheets 131, 107–221 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hilaire, S. & Girod, M. Large-scale mean-field calculations from proton to neutron drip lines using the D1S Gogny force. Eur. Phys. J. A 33, 237–241 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Berger, J., Girod, M. & Gogny, D. Constrained Hartree-Fock and beyond. Nucl. Phys. A 502, 85–104 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Berger, J., Girod, M. & Gogny, D. Time-dependent quantum collective dynamics applied to nuclear fission. Comput. Phys. Commun. 63, 365–374 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bernard, R., Simenel, C. & Blanchon, G. Hartree-Fock-Bogoliubov study of quantum shell effects on the path to fission in 180Hg, 236U and 256Fm. Eur. Phys. J. A 59, 51 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bernard, R. N., Simenel, C., Blanchon, G., Lau, N. T. & McGlynn, P. Fission of 180Hg and 264Fm: a comparative study. Eur. Phys. J. A 60, 192 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Verriere, M. & Regnier, D. The time-dependent generator coordinate method in nuclear physics. Front. Phys. 8, 233 (2020).

    Article 

    Google Scholar
     

  • Verriere, M., Schunck, N. & Regnier, D. Microscopic calculation of fission product yields with particle-number projection. Phys. Rev. C 103, 054602 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lau, N.-W. T., Bernard, R. N. & Simenel, C. Smoothing of one- and two-dimensional discontinuities in potential energy surfaces. Phys. Rev. C 105, 034617 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lasseri, R.-D., Regnier, D., Frosini, M., Verriere, M. & Schunck, N. Generative deep-learning reveals collective variables of fermionic systems. Phys. Rev. C 109, 064612 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Carpentier, P., Pillet, N., Lacroix, D., Dubray, N. & Regnier, D. Construction of continuous collective energy landscapes for large amplitude nuclear many-body problems. Phys. Rev. Lett. 133, 152501 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christie, W. et al. A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. A 255, 466–476 (1987).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    Hot this week

    Topics

    spot_img

    Related Articles

    Popular Categories

    spot_imgspot_img