Friday, May 2, 2025
22.5 C
London

An asymmetric fission island driven by shell effects in light fragments


  • Meitner, L. & Frisch, O. R. Products of the fission of the uranium nucleus. Nature 143, 239 (1939).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bohr, N. & Wheeler, J. A. The mechanism of nuclear fission. Phys. Rev. 56, 426–450 (1939).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scamps, G. & Simenel, C. Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides. Nature 564, 382–385 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bender, M. et al. Future of nuclear fission theory. J. Phys. G: Nucl. Part. Phys. 47, 113002 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Eichler, M. et al. The role of fission in neutron star mergers and its impact on the r-process peaks. Astrophys. J. 808, 30 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Yong, D. et al. r-process elements from magnetorotational hypernovae. Nature 595, 223–226 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goriely, S. et al. New fission fragment distributions and r-process origin of the rare-earth elements. Phys. Rev. Lett. 111, 242502 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemaire, M., Vaglio-Gaudard, C., Lyoussi, A. & Reynard-Carette, C. For a better estimation of gamma heating in nuclear material-testing reactors and associated devices: status and work plan from calculation methods to nuclear data. J. Nucl. Sci. Technol. 52, 1093–1101 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nichols, A. L. et al. Improving fission-product decay data for reactor applications. I. Decay heat. Eur. Phys. J. A 59, 78 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Strutinsky, V. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95, 420–442 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Andreyev, A. N. et al. New type of asymmetric fission in proton-rich nuclei. Phys. Rev. Lett. 105, 252502 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Itkis, M., Vardaci, E., Itkis, I., Knyazheva, G. & Kozulin, E. Fusion and fission of heavy and superheavy nuclei (experiment). Nucl. Phys. A 944, 204–237 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • An, F. et al. Evolution of the reactor antineutrino flux and spectrum at Daya Bay. Phys. Rev. Lett. 118, 251801 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, K.-H., Steinhauser, S. & Bockstiegel, C. Relativistic radioactive beams: a new access to nuclear-fission studies. Nucl. Phys. A 665, 221–267 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Chatillon, A. et al. Evidence for a new compact symmetric fission mode in light thorium isotopes. Phys. Rev. Lett. 124, 202502 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Itkis, M. G., Okolovich, V. N. & Smirenkin, G. N. Symmetric and asymmetric fission of nuclei lighter than radium. Nucl. Phys. A 502, 243–260 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Ghys, L. et al. Evolution of fission-fragment mass distributions in the neutron-deficient lead region. Phys. Rev. C 90, 041301 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andel, B. et al. β-delayed fission of isomers in Bi 188. Phys. Rev. C 102, 014319 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nishio, K. et al. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm. Phys. Lett. B 748, 89–94 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prasad, E. et al. Observation of mass-asymmetric fission of mercury nuclei in heavy ion fusion. Phys. Rev. C 91, 064605 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Tsekhanovich, I. et al. Observation of the competing fission modes in 178Pt. Phys. Lett. B 790, 583–588 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gupta, S. et al. Asymmetric fission around lead: the case of 198Po. Phys. Rev. C 100, 064608 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gupta, S. et al. Competing asymmetric fusion–fission and quasifission in neutron-deficient sub-lead nuclei. Phys. Lett. B 803, 135297 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Prasad, E. et al. Systematics of the mass-asymmetric fission of excited nuclei from 176Os to 206Pb. Phys. Lett. B 811, 135941 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bogachev, A. A. et al. Asymmetric and symmetric fission of excited nuclei of 180,190Hg and 184,192,202Pb formed in the reactions with 36Ar and 40,48Ca ions. Phys. Rev. C 104, 024623 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Swinton-Bland, B. et al. Multi-modal mass-asymmetric fission of 178Pt from simultaneous mass-kinetic energy fitting. Phys. Lett. B 837, 137655 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Schmitt, C. et al. Experimental evidence for common driving effects in low-energy fission from sublead to actinides. Phys. Rev. Lett. 126, 132502 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahata, K. et al. Evidence for the general dominance of proton shells in low-energy fission. Phys. Lett. B 825, 136859 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ichikawa, T., Iwamoto, A., Möller, P. & Sierk, A. J. Contrasting fission potential-energy structure of actinides and mercury isotopes. Phys. Rev. C 86, 024610 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ichikawa, T. & Möller, P. The microscopic mechanism behind the fission-barrier asymmetry (II): The rare-earth region 50 < Z < 82 and 82 < N < 126. Phys. Lett. B 789, 679–684 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Möller, P. & Randrup, J. Calculated fission-fragment yield systematics in the region 74 < Z < 94 and 90 < N < 150. Phys. Rev. C 91, 044316 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Andreev, A. V., Adamian, G. G. & Antonenko, N. V. Mass distributions for induced fission of different Hg isotopes. Phys. Rev. C 86, 044315 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Andreev, A. V., Adamian, G. G., Antonenko, N. V. & Andreyev, A. N. Isospin dependence of mass-distribution shape of fission fragments of Hg isotopes. Phys. Rev. C 88, 047604 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Panebianco, S. et al. Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes. Phys. Rev. C 86, 064601 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Warda, M., Staszczak, A. & Nazarewicz, W. Fission modes of mercury isotopes. Phys. Rev. C 86, 024601 (2012).

    Article 
    ADS 

    Google Scholar
     

  • McDonnell, J. D., Nazarewicz, W., Sheikh, J. A., Staszczak, A. & Warda, M. Excitation-energy dependence of fission in the mercury region. Phys. Rev. C 90, 021302 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Scamps, G. & Simenel, C. Effect of shell structure on the fission of sub-lead nuclei. Phys. Rev. C 100, 041602 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Geissel, H. et al. The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 70, 286–297 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Chatillon, A. et al. Experimental study of nuclear fission along the thorium isotopic chain: from asymmetric to symmetric fission. Phys. Rev. C 99, 054628 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martin, J.-F. et al. Fission-fragment yields and prompt-neutron multiplicity for Coulomb-induced fission of 234,235U and 237,238Np. Phys. Rev. C 104, 044602 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pellereau, E. et al. Accurate isotopic fission yields of electromagnetically induced fission of 238U measured in inverse kinematics at relativistic energies. Phys. Rev. C 95, 054603 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, K.-H., Jurado, B., Amouroux, C. & Schmitt, C. General description of fission observables: GEF model code. Nucl. Data Sheets 131, 107–221 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hilaire, S. & Girod, M. Large-scale mean-field calculations from proton to neutron drip lines using the D1S Gogny force. Eur. Phys. J. A 33, 237–241 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Berger, J., Girod, M. & Gogny, D. Constrained Hartree-Fock and beyond. Nucl. Phys. A 502, 85–104 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Berger, J., Girod, M. & Gogny, D. Time-dependent quantum collective dynamics applied to nuclear fission. Comput. Phys. Commun. 63, 365–374 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bernard, R., Simenel, C. & Blanchon, G. Hartree-Fock-Bogoliubov study of quantum shell effects on the path to fission in 180Hg, 236U and 256Fm. Eur. Phys. J. A 59, 51 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bernard, R. N., Simenel, C., Blanchon, G., Lau, N. T. & McGlynn, P. Fission of 180Hg and 264Fm: a comparative study. Eur. Phys. J. A 60, 192 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Verriere, M. & Regnier, D. The time-dependent generator coordinate method in nuclear physics. Front. Phys. 8, 233 (2020).

    Article 

    Google Scholar
     

  • Verriere, M., Schunck, N. & Regnier, D. Microscopic calculation of fission product yields with particle-number projection. Phys. Rev. C 103, 054602 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lau, N.-W. T., Bernard, R. N. & Simenel, C. Smoothing of one- and two-dimensional discontinuities in potential energy surfaces. Phys. Rev. C 105, 034617 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lasseri, R.-D., Regnier, D., Frosini, M., Verriere, M. & Schunck, N. Generative deep-learning reveals collective variables of fermionic systems. Phys. Rev. C 109, 064612 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Carpentier, P., Pillet, N., Lacroix, D., Dubray, N. & Regnier, D. Construction of continuous collective energy landscapes for large amplitude nuclear many-body problems. Phys. Rev. Lett. 133, 152501 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christie, W. et al. A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. A 255, 466–476 (1987).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    Hot this week

    Snag SanDisk’s ultra-compact 1TB USB flash drive for just $80

    Storage solutions have become quite affordable these days,...

    Culture leaders ‘unwilling’ to police which toilets people use

    Getty ImagesMeanwhile, professionals in the UK music industry...

    Jill Sobule, ‘I Kissed a Girl’ Singer, Dies in House Fire

    Singer Jill Sobule, best known for her 1995...

    Tips for Navigating the ‘Chaotic System’ of Student Loan Repayments

    So you’re about to graduate from college. Congratulations....

    Topics

    spot_img

    Related Articles

    Popular Categories

    spot_imgspot_img